• 0

  • 139

Hotspot虚拟机对象总结

黑猫

我不是黑客

1个月前

类加载的过程,对象的创建过程 放一块总结

1.类加载过程

Class 文件需要加载到虚拟机中之后才能运行和使用,那么虚拟机是如何加载这些 Class 文件呢?

系统加载 Class 类型的文件主要三步:加载->连接->初始化。连接过程又可分为三步:验证->准备->解析

加载

类加载过程的第一步,主要完成下面3件事情:

  1. 通过全类名获取定义此类的二进制字节流
  2. 将字节流所代表的静态存储结构转换为方法区的运行时数据结构
  3. 在内存中生成一个代表该类的 Class 对象,作为方法区这些数据的访问入口

虚拟机规范多上面这3点并不具体,因此是非常灵活的。比如:"通过全类名获取定义此类的二进制字节流" 并没有指明具体从哪里获取、怎样获取。比如:比较常见的就是从 ZIP 包中读取(日后出现的JAR、EAR、WAR格式的基础)、其他文件生成(典型应用就是JSP)等等。

一个非数组类的加载阶段(加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,这一步我们可以去完成还可以自定义类加载器去控制字节流的获取方式(重写一个类加载器的 loadClass() 方法)。数组类型不通过类加载器创建,它由 Java 虚拟机直接创建。

类加载器、双亲委派模型也是非常重要的知识点,这部分内容会在后面的文章中单独介绍到。

加载阶段和连接阶段的部分内容是交叉进行的,加载阶段尚未结束,连接阶段可能就已经开始了。

验证

对文件格式,元数据信息,字节码验证,符号引用进行验证

准备(这里就是对方法区里的一些常量进行赋值)

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:

  1. 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
  2. 这里所设置的初始值"通常情况"下是数据类型默认的零值(如0、0L、null、false等),比如我们定义了public static int value=111 ,那么 value 变量在准备阶段的初始值就是 0 而不是111(初始化阶段才会赋值)。特殊情况:比如给 value 变量加上了 fianl 关键字public static final int value=111 ,那么准备阶段 value 的值就被赋值为 111。

解析(这部分的符号引用和直接引用可以看上一篇文章)

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用限定符7类符号引用进行。

符号引用就是一组符号来描述目标,可以是任何字面量。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。在程序实际运行时,只有符号引用是不够的,举个例子:在程序执行方法时,系统需要明确知道这个方法所在的位置。Java 虚拟机为每个类都准备了一张方法表来存放类中所有的方法。当需要调用一个类的方法的时候,只要知道这个方法在方发表中的偏移量就可以直接调用该方法了。通过解析操作符号引用就可以直接转变为目标方法在类中方法表的位置,从而使得方法可以被调用。

综上,解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,也就是得到类或者字段、方法在内存中的指针或者偏移量。

初始化

初始化是类加载的最后一步,也是真正执行类中定义的 Java 程序代码(字节码),初始化阶段是执行类构造器 <clinit> ()方法的过程。

对于<clinit>() 方法的调用,虚拟机会自己确保其在多线程环境中的安全性。因为 <clinit>() 方法是带锁线程安全,所以在多线程环境下进行类初始化的话可能会引起死锁,并且这种死锁很难被发现。

对于初始化阶段,虚拟机严格规范了有且只有5种情况下,必须对类进行初始化(只有主动去使用类才会初始化类):

  1. 当遇到 new 、 getstatic、putstatic或invokestatic 这4条直接码指令时,比如 new 一个类,读取一个静态字段(未被 final 修饰)、或调用一个类的静态方法时。
    • 当jvm执行new指令时会初始化类。即当程序创建一个类的实例对象。
    • 当jvm执行getstatic指令时会初始化类。即程序访问类的静态变量(不是静态常量,常量会被加载到运行时常量池)。
    • 当jvm执行putstatic指令时会初始化类。即程序给类的静态变量赋值。
    • 当jvm执行invokestatic指令时会初始化类。即程序调用类的静态方法。
  2. 使用 java.lang.reflect 包的方法对类进行反射调用时如Class.forname("..."),newInstance()等等。 ,如果类没初始化,需要触发其初始化。
  3. 初始化一个类,如果其父类还未初始化,则先触发该父类的初始化。
  4. 当虚拟机启动时,用户需要定义一个要执行的主类 (包含 main 方法的那个类),虚拟机会先初始化这个类。
  5. MethodHandle和VarHandle可以看作是轻量级的反射调用机制,而要想使用这2个调用, 就必须先使用findStaticVarHandle来初始化要调用的类。

卸载

卸载类即该类的Class对象被GC。

卸载类需要满足3个要求:

  1. 该类的所有的实例对象都已被GC,也就是说堆不存在该类的实例对象。
  2. 该类没有在其他任何地方被引用
  3. 该类的类加载器的实例已被GC

所以,在JVM生命周期类,由jJVM自带的类加载器加载的类是不会被卸载的。但是由我们自定义的类加载器加载的类是可能被卸载的。

只要想通一点就好了,jdk自带的BootstrapClassLoader,PlatformClassLoader,AppClassLoader负责加载jdk提供的类,所以它们(类加载器的实例)肯定不会被回收。而我们自定义的类加载器的实例是可以被回收的,所以使用我们自定义加载器加载的类是可以被卸载掉的。

2.对象的创建

Step1:类加载检查

虚拟机遇到一条 new 指令时,首先将去检查这个指令的参数是否能在常量池中定位到这个类的符号引用,并且检查这个符号引用代表的类是否已被加载过、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

Step2:分配内存(很重要~)

类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需的内存大小在类加载完成后便可确定,为对象分配空间的任务等同于把一块确定大小的内存从 Java 堆中划分出来。分配方式“指针碰撞”“空闲列表” 两种,选择哪种分配方式由 Java 堆是否规整决定,而 Java 堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定

内存分配的两种方式:(补充内容,需要掌握)

选择以上两种方式中的哪一种,取决于 Java 堆内存是否规整。而 Java 堆内存是否规整,取决于 GC 收集器的算法是"标记-清除",还是"标记-整理"(也称作"标记-压缩"),值得注意的是,复制算法内存也是规整的

内存分配的两种方式

内存分配并发问题(补充内容,需要掌握)

在创建对象的时候有一个很重要的问题,就是线程安全,因为在实际开发过程中,创建对象是很频繁的事情,作为虚拟机来说,必须要保证线程是安全的,通常来讲,虚拟机采用两种方式来保证线程安全:

  • CAS+失败重试: CAS 是乐观锁的一种实现方式。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。虚拟机采用 CAS 配上失败重试的方式保证更新操作的原子性。
  • TLAB: 为每一个线程预先在 Eden 区分配一块儿内存,JVM 在给线程中的对象分配内存时,首先在 TLAB 分配,当对象大于 TLAB 中的剩余内存或 TLAB 的内存已用尽时,再采用上述的 CAS 进行内存分配

Step3:初始化零值

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),这一步操作保证了对象的实例字段在 Java 代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

Step4:设置对象头

初始化零值完成之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄等信息。 这些信息存放在对象头中。 另外,根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

Step5:执行 init 方法

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从 Java 程序的视角来看,对象创建才刚开始,<init> 方法还没有执行,所有的字段都还为零。所以一般来说,执行 new 指令之后会接着执行 <init> 方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

3. 对象的内存布局

在 Hotspot 虚拟机中,对象在内存中的布局可以分为 3 块区域:对象头实例数据对齐填充

Hotspot 虚拟机的对象头包括两部分信息第一部分用于存储对象自身的运行时数据(哈希码、GC 分代年龄、锁状态标志等等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是那个类的实例。

实例数据部分是对象真正存储的有效信息,也是在程序中所定义的各种类型的字段内容。

对齐填充部分不是必然存在的,也没有什么特别的含义,仅仅起占位作用。 因为 Hotspot 虚拟机的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,换句话说就是对象的大小必须是 8 字节的整数倍。而对象头部分正好是 8 字节的倍数(1 倍或 2 倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

3 对象的访问定位

建立对象就是为了使用对象,我们的 Java 程序通过栈上的 reference 数据来操作堆上的具体对象。对象的访问方式由虚拟机实现而定,目前主流的访问方式有①使用句柄②直接指针两种:

  1. 句柄: 如果使用句柄的话,那么 Java 堆中将会划分出一块内存来作为句柄池,reference 中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息;

  2. 直接指针: 如果使用直接指针访问,那么 Java 堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而 reference 中存储的直接就是对象的地址。

对象的访问定位-直接指针

优劣比较:

这两种对象访问方式各有优势。**使用句柄来访问的最大好处是 reference 中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而 reference 本身不需要修改。使用直接指针访问方式最大的好处就是速度快,它节省了一次指针定位的时间开销。**

免责声明:文章版权归原作者所有,其内容与观点不代表Unitimes立场,亦不构成任何投资意见或建议。

信息安全

139

相关文章推荐

未登录头像

暂无评论